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Acoustic energy flux from shock-turbulence interaction 

By H. S .  RIBNER 
Institute for Aerospace Studies, University of Toronto, Canada 

(Received 9 October 1967 and in revised form 12 July 1968) 

The analysis of the sound field generated by the passage of isotropic turbulence 
through a shock of finite strength (Ribner 1953, 1954) has been extended to 
provide the flux of acoustic energy emanating from unit area on the downstream 
side of the shock. This is motivated by the problem of estimating the sound 
power emerging from % supersonic jet containing shock waves. The energy flux is 
found to vary almost linearly with shock density ratio, reaching a maximum at 
infinite Mach number of 0.062 of the flux of turbulence kinetic energy convected 
into unit area of the shock. 

Direct comparison with a result obtained by Lighthill (1953) is misleading. His 
energy relations, reckoned relative to a frame moving with the fluid, must be 
converted to the shock-fixed frame used herein. The converted results of his 
theory (weak shocks) and the results of our theory (arbitrary shocks) appear to 
show a similar asymptotic behaviour for vanishing shock st-rength; they diverge 
with increasing shock strength. 

1. Introduction 
It is known that the passage of turbulence through a, shock wave generates 

relatively strong sound waves. The sound-pressure level has been evaluated 
(Ribner 1953, 1954) for an idealized model involving homogeneous turbulence 
convected through an infinite plane shock. This has only limited application, 
however, to such matters as the shock-turbulence interaction in a supersonic jet: 
local sound pressures within the jet and nearby may be predicted roughly, but 
not far-field effects nor total power. 

The flux of acoustic energy from unit area of the shock, on the other hand, 
would be relevant to power estimation. Calculations of this flux have been carried 
out only for an acoustical model of a shock (Lighthill 1953). In the present paper 
the analysis for finite shock strength (Ribncr 1954) is extended to provide the 
acoustic energy flux. 

2. Shock-turbulence interaction 
According to the Fourier integral theorem a turbulent velocity field can be 

represented as a superposition or spectrum of elementary waves distributed 
among all orientations and wavelengths. The waves are transverse for weak 
turbulence because of the constraint of incompressibility (even though convected 
at  high speed). Thus a single spectrum wave can be interpreted physically 
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(Ribner & Tucker 1952; Batchelor 1953) as a plane sinusoidal wave of shearing 
motion (figure 1). 

When a turbulence pattern is convected into a shock wave, the individual 
shear waves are abruptly altered on passing through. In addition, the shock 
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FIGURE 1. Single Fourier component of a weak turbulent flow (shear wave). 

Refracted A shear-entropy 

Shod 

Initial 
shear 
wave 

Sound 
wave 

FIGURE 2. Passage of turbulence through a shock can be rcpreseiited as a Fourier super- 
position of waves like these. 

interaction generates a pattern of sound waves (and entropy waves) on the down- 
stream side. If the initial turbulence wave pattern is known statistically then the 
sound-wave pattern can be determined statistically. That is, spectra, correla- 
tions, and mean square values can be calculated. 

The shock interaction for an arbitrary shear wave encountering an infinite 
plane shock is shown in figure 2. The quantitative relations were worked out and 
incorporated into a statistical analysis for homogeneous turbulence by Ribner 
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(1953,1954). A brief account of relevant parts of the development is given below. 
The key quantities are non-dimensional : u is longitudinal velocity component/ 
a* ( = critical sound speed); pff is perturbation pressure/p, ( = ambient pressure). 

We may express the velocity field of an individual shear wave as (figure l ) ,  

du = dZ,(k)exp(ik.x), (1)  
with similar expressions for dv and dw. The integral of du, dv, dw over k-space is 
then the Fourier-Stieltjes integral for the turbulent velocity field. 

In  (1)  du is the velocity component normal to the shock, and the planes of 
constant phase k.x = constant make an angle 0 with this normal (figures 1, 2 ) .  
The pressure dp" in the sound wave that arises from the shock interaction is 

( 2 )  dp" = dZ,,,(k") exp (ik. x), 
where the phase planes k".x = constant are inclined at  angle 0" to the shock 
normal. 

The amplitudes of the two waves are related by 

Up" = P(O)dZ,, (3) 
where the transfer function P(0)  is the result of a gasdynamic calculation (tabula- 
ted in Ribner (1954)). The dependence of P solely on the angle 0 is to be noted. 

It is necessary to invoke statistical relations to deal with the random nature 
of the turbulent field and of the sound field it produces. If we form the ensemble 
average for two waves of different wave-numbers k and K, it is easily proved 

(4) 
that 

according to Tatarski (1961). Here [uu] is our special symbol for the spectral 
density of (u2} in wave-number space k. The vanishing of 8 ( ~  - k) for K + k 
implies that waves of different wavelengths or inclinations (since IC and k are 
vectors) are statistically independent. 

dZ,,(k)dZz(K) = ~ ( I C  - k) [xu] d 3 k d 3 ~  

The integral of (4) over K-space may be written, by virtue of the &-function, 

dZ,(k)dZz(k) = [uu]d3k velocity (shear wave). (5) 

dZ,,,(k") dZg-(k") = [p"p"] d3k" pressure (sound wave). (6) 
Similarly, 

The integral of ( 5 )  over k-space is (u2} and the integral of (6) over kW-space is 
QP>. 

From (3), (5) and (6) 
r 

(prf2) = IP(0)12[uu]d3k. (7 )  
J m  

The initial turbulence is now restricted to  be isotropic, so that its longitudinal 
spectral density has the general form (Batchelor 1953) 

[uu] = k2F(k) cos20 (8) 

( 9) 

in spherical polar co-ordinat,es in wave-number space. In  these co-ordinates 

d3k = k2 cos2 8dkd#d0, 
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where the azimuth q5 is the angle between the projection of k on the shock plane 
and some reference line on the shock. Thus, by (5) 

It follows from (7) to (10) that the mean square pressure in the sound pattern 
( ~ “ 2 )  is related to the mean square longitudinal velocity {u2) in the initial tur- 
bulence by 

(p)  = p(o)1zcos3eae. (11) 
0 

The contributions to (prr2) from waves at  each angle 0” are statistically inde- 
pendent (cf. remarks after (4)). Thus the contribution associated with sound 
waves at  angle 8” in the range dO” is 

d ( p ”  8”)) = &&Z)lP(B) coS3 8d8, (12) 
where do“ is known in terms of dO. 

Equations (11) and (12) cover two classes of sound waves associated with 
respective ranges of the inclinations 8” and 8. For O,, < 181 < &r, the wave 
amplitude lP(8)I is constant with distance x downstream of the shock. For the 
smaller inclinations 0 < 8 < O,, the amplitude IP(8)I decays exponentially, so 
that these waves constitute the ‘near-field’. These near-field waves carry no 
acoustic energy-the pressure and particle velocity are out of phase-and are not 
relevant to the further analysis that follows. Thus all the later integrals will 
carry the integration limits O,, to &T, where 8,, is a known function of Mach 
number. 

3. Acoustic energy flux 
The above results plus energy flow relations for a moving medium (Blokhint- 

sev 1946) provide the basis for calculation of the acoustic energy flux per unit 
area of the shock in terms of the turbulent energy flux and upstream flow Mach 
number. 

For plane unattenuating waves at inclination 0“ (figure 3) the acoustic energy 
flux propagates in the direction of the ‘ray velocity’ V,. The energy flux per 
unit area is (e.g. Ribner 1958) 

(13) 
2 d(P”Y8”)) v 

F S* 
P 1 4  

Nl? = P1 

Here a, is the appropriate sound speed (the value downstream of the shock) and 
p1 is the ambient pressure there (note definition of non-dimensional pressure 
prr preceding (1)) .  

The flux of acoustic energy per unit area normal t o  the shock is the component 

qa,(w) = ix,lv,. uljv,vl. (14) 
By the geometry of figure 3 this may be written (with MI = UJa) 
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Upon incorporating (12) and integrating over 8” there results 

303 

in terms of an integral over 8. This is the required flux of acoustic energy per unit, 
area normal to the shock. 

Ul 

FIGURE 3. Geometry for determining acoustic energy flux in 8 moving medium. 

For comparison the flux of kinetic energy of turbulence into the shock is 

(17) 

(recalling the non-dimensional definitions of u, etc., preceding (1)) 

Iturb = (&[( u + a*u)2+ (a*v)2+ (a”w)2] ( U  + a*u)) - 4pu3 

Ituib = 4p Ua*2( 3(u2) + (v’) f (w’)) = gp Ua*’ ( u2 >7 

per unit area. The averaging yields 

(18) 

where the final form results from the postulated isotropy (u2)  = (vz) = (w2). 

The ratio of acoustic to turbulent energy flux is thus, from (16) and (18), 

For evaluation of the intensity ratio (19) it is necessary to know the transfer 
function P(8) and the dependence of sound wave inclination 8” on incident shear 
wave inclination 8. These quantities are rather cumbersome functions of other 
functions obtained by Ribner (1953) and evaluated and tabulated (1954) along 
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FIGURE 5. Calculated flux of acoustic energy from shock-turbulence interaction. 
Abscissae scale linear in shock velocity (or density) ratio. 

value 1.4. The results are plotted in figures 4 and 5 against the Mach number M 
and the velocity ratio m = UlU,. In figure 5 the scale is linear in m, which effects 
a compression of the high Mach number end: the point M = c/3 corresponds to 
m = 6. 
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4. Comparison with Lighthill 
Lighthill (1953) has treated the present problem in the limit of very weak 

shocks. He employed an extension of his general theory of sound generated 
aerodynamically, with the shock represented by an acoustic step function. The 
result is expressed as a ratio of ‘freely scattered’ acoustic energy to the kinetic 
energy of the turbulence traversed by the shock wave. 

Direct comparison with Lighthill’s result in its present form is not admissible. 
His energy relations ase reckoned relative to a frame moving with the fluid, 
whereas ours are reckoned relative to a frame attached to the shock. The fluid- 
fixed frame is well suited to deal with a patch of quasi-stationary turbulence 

0.1 1 
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/ / 

0 / 
m = U / U ,  

FIGURE 6. Comparison of predictions of Lighthill weak-shock theory (m near unity) and 
present theory. Lighthill results converted to  shock-fixed reference frame. 

traversed by a moving shock in a shock tube. The shock-fixed frame, on the other 
hand, is convenient for supersonic jets in which turbulence passes continuously 
through a stationary shock pattern. The appropriate expression for acoustic 
energy flux in the shock-fixed frame, due to Blokhintsev (1946), exhibits con- 
servation of energy for ‘ray tubes’ passing from the jet to the quiescent air 
outside. 

Conversion of the relevant results of Lighthill to the shock-fixed reference 
frame is made in appendix B. The final result in the form 

flux of acoustic energy 
flux of turbulent kinetic energy ’ % lac  100- = 100 

Iturb 

per unit area of shock is designated ‘ converted Lighthill ’ as the upper curve of 
figure 6. The lower curve is the corresponding result of the present report. These 
are plots of the data of table 1. 

The curve of the Lighthill theory (weak shocks) and the curve of the present 
theory (arbitrary shocks) appear to show a similar asymptotic behaviour for 
vanishing shock strength; they diverge with increasing shock strength. 

20 Fluid Mech. 33 
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Both of these features are to be expected in view of the weak-shock assumption 
implicit in the Lighthill theory. What is surprising is that the divergence be- 
tween the two results is already appreciable when m exceeds 1.02. Thus we are 
inclined to examine the assumptions underlying the two theories in more detail. 

In  the present theory the shock may have arbitrary strength, but the tur- 
bulence velocity is postulated small compared with the (supersonic) flow speed. 
Ripples or undulations in the shock that develop on passage of the eddies are 
allowed for. Differences in turbulence intensity across the shock are accounted 
for; in fact, they are predicted. 
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0 . 0 0 3 6 ~ 0  0.0051~0 
0.0414 0.0905 
0.0890 0.281'; 
0.252. 1.073 
0.512 - 
1.39 - 
2.35 - 
3.1'; 
4.20 - 
5.18 - 
6.20 - 

- 

TABLE 1. Acoustic energy flux/turbulence energy flux = Idc/Iturb 

In  the Lighthill theory both the shock and the turbulence are weak: the 
relevant velocities are small compared with the speed of sound. The shock is 
postulated as planar and moving a t  constant speed; the rippling motion, which 
implies a spread of the local shock speeds about a mean, is suppressed. 
Differences in turbulence intensity across the shock are likewise suppressed. 

In  both theories the turbulence is treated in effect as a 'frozen' spatial pattern 
with neglect of the temporal fluctuations. 

The assumptions of the Lighthill theory are the more restrictive, not only as 
to the weak-shock limitation, but otherwise. Suppression of the shock ripples is 
predicted to  have a first-order effect on the sound pressure field. The apparent 
asymptotic approach of the two theories for m-t 1 is therefore not an obvious 
expectation. The approach is, however, encouraging. 

On the other hand, the shortness of the weak-shock region of approximate 
agreement is very marked in figure 6. Perhaps this is one of those cases-for- 
tunately in the minority-where the range of a first-order theory is very limited 
indeed. 

5. Concluding remarks 
Although the generation of sound by shock-turbulence interaction was 

predicted as early as 1953 (independently by Lighthill, Ribner, and Moore), 
clear-cut shadowgraph evidence of such sound waves is relatively recent (e.g. the 
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work of Ollerhead 1966). Ollerhead’s paper shows the sound waves produced 
where the turbuleiice of a supersonic jet passes through the shock pattern. It 
was just this problem which motivated the present work, namely, the prediction 
of the intensity of the sound waves emerging from the jet into the outer quiescent 
air. 

However, Lowson (1966) has examined the related problem of surface pres- 
sures under the foot of a shock traversed by a turbulent boundary layer. He 
finds that the near field pressures appear to dominate. This has led him to 
suggest? that the near-field pressures may be an important factor where shock- 
turbulence interaction occurs near the edge of a jet: these strong fluctuating 
pressures imposed on such a pressure-release boundary could greatly enhance 
the shock-turbulence sound. The present calculations are thus perhaps of poor 
applicability to the problem: they preclude such enhancement in that they do 
not allow for a jet boundary near the shock. The near field terms are ignored in 
our calculation of energy flux, since without an interface they carry zero acoustic 
energy. 

Thanks are due to Drs M. J. Fisher and M. V. Lowson for their interest in the 
unpublished curves in advance of publication, to Dr Malcolm McChesney for 
suggestions concerning the exposition of the material, to Mrs Jean Surry for 
carrying out most of the computations, and to Mr Felix L. Lam for checking the 
conversion of the Lighthill results. 

The work was supported by the Air Force Office of Scientific Research, Office 
of Aerospace Research, United States Air Force, under AFOSR Grant no. 672-66. 

Appendix A. Reformulation of equation (19) 
We require to express the integrand of (19), 

in terms of tabulated functions of 8 for purposes of numerical integration. 
From Ribner (1954, appendix A) 

Also 

since pU = p1 U,, MI = UJa,, In = UlU, this reduces to 

3 323; 
5ppl a, a*2 U - SN; y%n ’ 

t Private communication. 
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Insertion of (A 2) and (A 3) into (A 1) gives 

dI,,/d8 - 3 IP cos 19 (1 + M, sin 8”) ( M, + sin 0”) - ~~ ~ 

Itturb 

as a suitable form of integrand. The functions ll, 8’ and 8“ are tabulated against 
8 in Ribner (1954) for a series of values of M ,  the flow Mach number upstream of 
the shock. Values of m corresponding to each M are also listed, and M,, the Mach 
number after the shock, can be found from 

or in tables (e.g. Liepmann & Roshko 1957). 

Appendix B. Lighthill results referred to moving medium 
I n  Lighthill’s (1953) analysis the reference frame and a certain spherical con- 

trol surface are fixed in the medium behind the shock considered stationary; the 
shock is in motion. Relative to this frame the acoustic energy crosses unit area of 
the control surface normal to bhe propagation vector a a t  a rate 

(P - Pol2 - (1, -Pol2 energy flux = u3 ___ - __- 
Po Po a 

per unit time. 
We wish to go over to a reference frame attached to the shock, so that the 

medium moves with velocity U, relative to the frame. The spherical control 
surface is unchanged, always containing the same fluid, so it too moves with 
velocity U,. On evaluating the energy density in the new frame, acoustic energy 
crosses unit area of the control surface a t  a rate (Ribner 1960) 

U3(P - Pol2 energy flux = ~ ~- ~ - ( 1 + U, . a/&?). 
Po . .  

By geometry this is 

energy flux = u3(p ; Po)2 ( 1  - MI cos B ) ,  
PO 

where Lighthill’s 8 is the angle between the wave normal and t,he upstream shock 
normal. 

For air, to the first-order in shock strength s 3 Aplp, 

N1 = 1 -$s, 

so that energy flux = a 3 ( ~  -PO)‘ (1 - cos o + $8 cos 8). 
Po 

On neglecting $8 compared with unity, 

energy flux z u*~d: 2 sin2 (+el. 
Po 
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Accordingly, because of t’he change of reference frame for evaluating acoustic 
energy density, Lighthill’s equation (60) for total scattered energy acquires a. 
factor 2sinz(&8). It follows that the integrand of his equation (73) must be 
multiplied by the same factor to yield 

This has the effect of cancelling out the singularity that makes the integral very 
large in Lighthill’s reference frame. 

The excluded waves, directed in the range 0 < 8 < sec-l(l +a), will overtake 
the shock and are ‘probably mostly absorbed’. The limiting angle sec-l(l+ a )  
corresponds to the wave angle 6& in our notation (sec-l(l +a)  - 8lr, = n/2).  Thus 
the waves that are ‘probably mostly absorbed’ and are therefore excluded 
correspond to those in our analysis that decay exponentially with distance from 
the shock. This is the acoustic near field, and is likewise excluded from our 
integral associated with the far field. 

Upon evaluation the integral is 

(B 8 )  
€2 . - 
4 

efs = - ($ . po~;~)[1*45+4( -p+$p3-23P5+$48’)], 

where efs is the total acoustic energy that passes out of the moving control surface 
when the shock traverses unit volume of turbulent fluid behind the shock. This 
refers to the shock-fixed reference frame, and thus the flux of acoustic energy is 
ef8 U, in this frame. 

The flux of turbulence kinetic energy into the shock from upstream is given by 
(7);  in Lighthill’s (1953) notation this flux is 

$p,v;z u, (B 9) 

where changes in the turbulence across the shock are neglected. The flux ratio is 

- u1[145-4p+yp31E2 (B 10) lac flux of acoustic energy - -- - .  - 
Itturb flux of turbulent energy 20 U 

to order p3.  
The various shock-strength parameters are connected as follows for air 

(Y = <-I 
a (see Lighthill 1953) = QE, (B 11) U P 

Ul Pl 
e = - -1= m - 1 ,  = --I= 2. 

to  the first-order forweak shocks (e < 1). Uponneglecting E comparedwithunity, 
UJU is replaced by unity in (B 10) to give 
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This is the acoustic/turbulent energy flux ratio as converted from the Lighthill 
(1953) theory to apply to the present shock-fixed reference frame. It is r&ricted 
to weak shocks E = (m - 1) < 1 by the assumptions of the theory; other assump- 
tions are discussed in the main text. 

The comparison of (B 12) with our results computed from (19) herein becomes 
imprecise except for E so near zero that higher-order terms neglected in (B 11) 
and elsewhere are truly negligible. That is, (B 12) considered as a function of s 
will be somewhat different from (B 12) considered as a function of E when the 
higher-order terms neglected in (B 11) are a,llowed for. The Lighthill theory, 
embodying (B 11))  makes no distinction. 

Added note. Lighthill’s final result for the ratio of ‘freely scattered’ acoustic 
energy to the kinetic energy of the turbulence ;pod2 traversed by the shock wave 
appears to contain an arithmetical error. 

- 

Thus on using E = $8, a = $8, Lighthill’s equation (73) leads to 

0.551~8 - 1 . 0 5 4 ~ ~  + 0.835~8 
for this ratio, i n  place of his equation (74), 

0.78%- 1*0s2+O.7s~. 

This will alter his tabulated values (table 1) which refer to a reference nioviiig 
with the fluid, rather than our shock-fixed frame. 

REFERENCES 

BATCHELOR, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University 

BLOKHINTSEV, D. I. 1946 Acoustics of a nonhomogeneous moving medium. N A C A  T i !  

LIEPMANN, H. W. & ROSHEO, A. 1957 Elements of Casdynamics. New York: John Wiley. 
LIGHTHILL, M. J. 1953 On the energy scattered from the interaction of turbulence with 

sound or shock waves. Proc. Camb. Phil. SOC. 49, 531-51. 
LOWSON, M. V. 1966 The fluctuating pressures due to shock interactions with turbulence 

and sound. Wyle Laboratories, Huntsville, Ala., Res. Staff Rep. WR 66-35. 
MOORE, F. K. 1953 Unsteady oblique interaction of a shock wave with a plane dis- 

turbance. N A C A  Rep. no. 1165, 1954 (supersedes TN no. 2879, 1953). 
OLLERHEAD, J. 1966 Some shadowgraph experiments with a cold supersonic jet. Wyle 

Laboratories, Huntsville, Ala., Res. Xtaff Rep. WR 66-44. 
RIBNER, H. S. 1953 Convection of a pattern of vorticity through a shock wave. N A C A  

T N  no. 2864, Jan. 1953; N A C A  Rep. no. 1164, 1954. 
RIBNER, H. S. 1954 Shock-turbulence interaction and the generation of noise. N A C A  

1‘N no. 3255, July 1954; N A C A  Rep. no. 1233, 1955. 
RIBNER, H. S. 1958 Note on acoustic energy flow in a moving medium. Univ. of Toronto, 

Inst. for Aerospace Studies, U T I A  T N ,  no. 21. 
RIBNER, H. S. 1960 Energy flux from sn  acoustic source contained in a moving fluid 

element and its relation to  jet noise. J .  Acoust. Soc. Am.  32, 1159-60. 
RIBNER, H. S. &; TUCKER, M. 1952 Spectrum of turbulence in a contracting stream. 

N A C A  T N  no. 2606, Jan. 1952; N A C A  Rep. no. 1113, 1953. 
TATARSGI, V. I. 1961 Wave Propagation. i n  a Turbulent Medium. New York: McGrw-Hill. 

Press. 

no. 1399 Feb. 1956 (translation of 1946 Russian paper). 


